United States Patent

US009098538B2

(12) 10) Patent No.: US 9,098,538 B2
Bansode et al. (45) Date of Patent: Aug. 4, 2015
(54) MASTER DATA MANAGEMENT 7,836,028 B1* 112010 Agarwaletal. 707/695
VERSIONING 8,260,824 B2* 9/2012 Maoetal. 707/803
8,335,215 B2* 12/2012 Fischer 370/392
8,356,009 B2* 1/2013 Ellard et al. ... 707/620
(75) Inventors: Neelesh V. Bansode, Bangalore (IN); 8387.060 B2* 22013 Yinetal. ... " 719316
Thomas K. Ryan, Valley Center, CA 8,402,361 B2* 3/2013 Goldberg . .. 715212
(US); Latesh Pant, Bangalore (IN); 8417,739 B2* 4/2013 Williamson ... 707/804
Vivek Shandilya, Bangalore (IN); Nitin 2002/0059003 Al* 5/2002 Ruthetal. ... 700/19
. ’ - Sha 2003/0055822 AL* 3/2003 YU wooovveceerrccenn. . 707/6
Pratap Jain, Bangalore (IN): Shashank 2004/0059611 A1* 3/2004 Kananghinis et al. .. 705/7
Shekhar, Patna (IN) 2005/0033726 AL* 2/2005 Wu etal. oo 707/1
. 2005/0138160 A1* 62005 Kleinetal. 700/223
(73) Assignee: Teradata US, Inc., Dayton, OH (US) 2006/0026124 Al* 2/2006 Schwarzmann 707/2
2006/0064666 Al* 3/2006 Amaruetal. 717/100
(*) Notice: Subject to any disclaimer, the term of this %88?;85%22; ﬁ} . 1?%88? Eegill;lrllt et atl . ;8;;}83
: : us. an et al. ...
pateIlt 15 eXtended or adJuSted under 35 2009/0193051 Al 3k 7/2009 Ueda et al' 707/102
U.S.C. 154(b) by 141 days. 2011/0004633 Al* 12011 Kantorovaetal. 707/802
2012/0059863 A1* 3/2012 Thomson etal. 707/805
(21) Appl. No.: 13/250,740 2012/0240193 Al* 9/2012 Littlefield et al. 726/4
(22) Filed: Sep.30,2011 * cited by examiner
(65) Prior Publication Data Primary Examiner — Miranda Le
US 2012/0084257 A1 Apr. 5, 2012 (74) Attorney, Agent, or Firm — Gates & Cooper LLP
Related U.S. Application Data (57 ABSTRACT
(60) Provisional application No. 61/388,387, filed on Sep. A method, system, apparatus, and article of manufacture pro-
30, 2010. vide the ability to maintain multiple versions of structured
views of data in a computer system. A relational database
(51) Int.ClL management system (RDBMS) is executed that stores master
GOG6F 17/30 (2006.01) data in the computer system in master RDBMS tables. The
(52) US.CL master data is hierarchical in nature and hierarchy metadata
CPC GO6F 17/30309 (2013.01); GOGF 17/30356 for the master data is stored in the RDBMS tables. As part of
(2013.01); GO6F 17/30383 (2013.01) a process and framework, a series of business rules and pro-
(58) Field of Classification Search cess workflows are maintained to manage the master data.
CPC oo GOGF 17/30309 Version tables are created in the RDBMS that correspond to
USPC oo, 707/638, 792, 999.1, 999.203, 610 each of the master RDBMS tables. Each of the version tables
See application file for complete search history. includes an attribute denoting version information. Versions
of the master data are defined by replicating the master data
(56) References Cited and hierarchy metadata into the corresponding version tables.

U.S. PATENT DOCUMENTS

The version tables are used to graphically visualize, manage,
and manipulate the versions of the master data.

6,192,373 B1* 2/2001 Haegelecccooecvvevirinennnnn 1/1
7,246,128 B2* 7/2007 Jordahlccccccoovviiriiinin. 1/1 12 Claims, 7 Drawing Sheets
DATAMOBEL CLIENT SNTERFACE CUENT ” DATA MODEL
we o W il 0 i K2 e
A
g
Y
RDRBSE
PARSING 106
ENDHNE
kic4
~ T4 fﬁ‘/ 1108 {vmrc E._Amo im/“@
ATCESS ACUESS ATOQESE ACOESS ALCESS
MODULE ROHLAE MOUILE MODIE LAGOULE
FRORESSDR PROCESEOR FRUCESSOR FROQESSOR PROCESSAR
3 ' PO SO N
LY) ¥ .11 {,me ¥ i_,.ﬁﬂ S o
T T T 5 dEy Uy
L L) [—ne S

US 9,098,538 B2

Sheet 1 of 7

Aug. 4,2015

U.S. Patent

s’ w

wwmwn)zm

HOBEIOOUA
FINAOW
$EIQY

HOQERIOOMI
FUICH
IO

HOSEIIA
FIHIOW

BEIOZY

amﬁ}.w ﬂ @mﬁ}w ﬁ qoit o ﬁ

HUOBRAZD S
FHGON
BEIOOY

HOSSIGOUS
FWaow

SEIOBV

i
SHasH

DN

864 . »
BAOW Yive

Aitd
AMBTD ¢ »

T S e

FIVIYZING

AMBVES

S b4
. BAOH Yiva

US 9,098,538 B2

Sheet 2 of 7

Aug. 4, 2015

U.S. Patent

SRR

d

O

s
ool

ZEE

)

%

BRSSO

e R R

BEOTOLI I R UORERLIEA

'

S
oLz

- -~ -
A 8O3

sepgidavRImunIeRE A

o Aearoafyom

COGRPMIEA

¥
:s..e«.
7 ot
A

sty

e ST o~ GEE
o & 3
/ e
a8 Ayniniand B IR
§
BTN b e AT Qi Agnaingd
& _/ . g
-t T giE
FhEA,

US 9,098,538 B2

Sheet 3 of 7

Aug. 4, 2015

U.S. Patent

ILFEEIVG

£ "Ol4

S YR _0
ul(q\

.,

& & /z\

™

| \\ DA A

WO

AO3E0G W LN
FLOHEN HOLLY

\

gaop

BIPEINCGNGD XS

£

gog"

US 9,098,538 B2

Sheet 4 of 7

Aug. 4, 2015

U.S. Patent

b

*

Ol

U.S. Patent Aug. 4, 2015 Sheet 5 of 7 US 9,098,538 B2

iy

B4

FIG. 5

U.S. Patent Aug. 4, 2015 Sheet 6 of 7 US 9,098,538 B2

FiG. 6

U.S. Patent Aug. 4, 2015 Sheet 7 of 7 US 9,098,538 B2

EXECUTE AN RDBMS

X
AAINTAIN BLISINESS . Fi3d
RULES AND PROCESS
WORKFLOWS

FIG. 7

cREATE vERston | 1790

TABLES

pEEINE vERSIONS OF | [T

MASTER DATA

UTILIZE VERSION
TABLES

US 9,098,538 B2

1
MASTER DATA MANAGEMENT
VERSIONING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefitunder 35 U.S.C. Section
119(e) of the following commonly-assigned U.S. provisional
patent application(s), which is/are incorporated by reference
herein:

Provisional Application Ser. No. 61/388,387, filed Sep. 30,
2010, by Neelesh V. Bansode, Thomas K. Ryan, Latesh Pant,
Vivek Shandilya, Nitin Pratap Jain and Shashank Shekhar,
entitled “Master Data Management Versioning.”

This application is related to the following co-pending and
commonly-assigned patent application, which application is
incorporated by reference herein:

U.S. patent application Ser. No. 12/574,509, entitled
“HIERARCHY MANAGER FOR MASTER DATA MAN-
AGEMENT”, by Brian J. Wasserman, Thomas K. Ryan, Carl
L. Christofferson, Neelesh V. Bansode, Santosh Kumar
Singh, Madhavi Chandrashekar, and Vivek Shandilya, filed
on Oct. 6, 2009, which application claims priority to Provi-
sional Application Ser. No. 61/195,321, filed Oct. 6, 2008,
Brian J. Wasserman, Thomas K. Ryan, Carl Christofferson,
Neelesh V. Bansode, Santosh Kumar Singh, Madhavi Chan-
drashekar, and Vivek Shandilya, entitled “Hierarchy Manager
for Master Data Management.”

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates in general to managing business
critical data in a computer, and in particular, to managing
different versions of such data.

2. Description of Related Art

Master Data Management™ (MDM) (also known as an
MDM application), available from the assignee of the present
invention, is an application that allows users to manage their
business critical data. This critical data can originate from a
myriad of sources and external feeds, but ultimately, the goal
is that all of this data be consolidated into a central business
data warehouse. Master Data Management™ is the process
and framework for maintaining a series of business rules and
process workflows that will manage this data as it feeds in
from multiple sources. Master Data Management™ then
applies these business rules and process workflows to pro-
duce “master” data, which is then fed to all consuming busi-
ness processes.

A common requirement for customers in a Master Data
Management™ context is the ability to manage master data
across different versions of that data. Specifically, users
desire to manage “versions” of hierarchies that contain mas-
ter data records and master data relationships. Such problems
may be better understood with a more detailed explanation of
master data and master data relationships.

Core to the management of master data is the definition of
a data model. The data model serves as the foundation for all
business rules and workflow processes within the Master
Data Management™ (MDM) framework. The data model
represents the form the master data must ultimately take in the
customer’s data warehouse to be used by the consuming
business applications.

A significant portion of the business critical master data
consists of “data relationship” data itself. Relationship data is
the data required to manage the association of one piece of
data (typically a data entity or table) to another. The Data

10

30

35

40

45

55

2

Relationship can take the form of a hierarchy or a direct
reference or any other association. Management of the rela-
tionship or association requires data and business processes
that are key to the concept of Master Data Relationship Man-
agement.

Different versions of both the master data and relationship
data may exist in various hierarchies across multiple users.
Accordingly, it is desirable to manage and manipulate such
different versions.

SUMMARY OF THE INVENTION

One or more embodiments of the invention provide tech-
niques to manage and to manipulate versions of hierarchies
and hierarchical data. The master data and the relationship
data reside in a series of MDM™ tables that are part of the
core of Master Data Management™. Management and
manipulation of relationship data are provided within MD™
in the form of user interfaces, hierarchies, and business work-
flows capabilities.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates an exemplary hardware and software
environment according to one or more embodiments of the
present invention;

FIG. 2 illustrates a data model used to assist in visualizing
a hierarchy version in accordance with one or more embodi-
ments of the invention;

FIG. 3 illustrates the architecture of a hierarchy manager in
accordance with one or more embodiments of the invention;

FIG. 4 is an exemplary user interface illustrating the selec-
tion of a menu option to create a new hierarchy version in
accordance with one or more embodiments of the invention;

FIG. 5 is an exemplary user interface illustrating the
options for configuring a hierarchy version in accordance
with one or more embodiments of the invention;

FIG. 6 is a user interface illustrating a view of a hierarchy
version using a hierarchy viewer in accordance with one or
more embodiments of the invention; and

FIG. 7 is a flow chart illustrating the logical flow for main-
taining versions of structured views of data in a computer
system in accordance with one or more embodiments of the
invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

In the following description of the preferred embodiment,
reference is made to the accompanying drawings which form
a part hereof, and in which is shown by way of illustration a
specific embodiment in which the invention may be practiced.
It is to be understood that other embodiments may be utilized
and structural changes may be made without departing from
the scope of the present invention.

OVERVIEW

One or more embodiments of the invention provide tech-
niques and capabilities for managing and manipulating dif-
ferent versions of hierarchies and hierarchical data.
Hardware and Software Environment Overview

Master data (sometimes referred to as reference data) are
facts that define a business entity, facts that may be used to
model one or more definitions or view of an entity. Entity

US 9,098,538 B2

3

definitions based on master data provide business consistency
and data integrity when multiple systems across an organiza-
tion (or beyond) identify the same entity differently (e.g., in
differing data models).

Business entities modeled via master data are usually cus-
tomer, product, or finance. However, master data can define
any entity, like employee, supplier, location, asset, claim,
policy, patient, citizen, chart of accounts, etc.

A system of record is often created or selected (also
referred to as a trusted source) as a central, authenticated
master copy from which entity definitions (and physical data)
are propagated among all systems integrated via a Master
Data Management™ (MDM) framework.

The system of record can take many forms. Many users
build a central database (e.g. a data warehouse or operational
data store) as a hub through which master data, metadata, and
physical data are synchronized. Some hubs are simply master
files or tables that collect and collate records.

Regardless of the technology approach, embodiments of
the invention provide the ability to deploy a system on any
designated target system for testing or production.

FIG. 1 illustrates an exemplary hardware and software
environment according to one or more embodiments of the
present invention. In the exemplary environment, a computer
system 100 implements an improved MDM framework 100,
in a three-tier client-server architecture, wherein the first or
client tier provides clients 102 that may include, inter alia, a
graphical user interface (GUI), the second or middle tier
provides an interface 104 for performing functions and inter-
facing with a central database or data warchouse, and the third
or server tier comprises the central database or data ware-
house (also referred to as a Relational DataBase Management
System (RDBMS) 106) that stores data and metadata in a
relational database. Such an RDBMS 106 is utilized to store
the master data and provide a standard format within frame-
work 100 for the master data. The first, second, and third tiers
may be implemented in separate machines, or may be imple-
mented as separate or related processes in a single machine.

In one or more embodiments, the RDBMS 106 includes at
least one parsing engine (PE) 108 and one or more access
module processors (AMPs) 110A-110E storing the relational
database in one or more data storage devices 112A-112E. The
parsing engine 108 and access module processors 110 may be
implemented in separate machines, or may be implemented
as separate or related processes in a single machine. The
RDBMS 106 used in the preferred embodiment comprises the
Teradata® RDBMS sold by Teradata™ US, Inc., the assignee
of the present invention, although other DBMS’s could be
used. In this regard, Teradata® RDBMS is a hardware and
software based data warehousing and analytic application/
database system.

Generally, clients 102 include a graphical user interface
(GUI) for operators or users of the system 100, wherein
requests are transmitted to the interface 104 to access data
stored in the RDBMS 106, and responses are received there-
from. In response to the requests, the interface 104 performs
the functions described below, including formulating queries
for the RDBMS 106 and processing data retrieved from the
RDBMS 106. Moreover, the results from the functions per-
formed by the interface 104 may be provided directly to
clients 102 or may be provided to the RDBMS 106 for storing
into the relational database. Once stored in the relational
database, the results from the functions performed by the
interface 104 may be retrieved more expeditiously from the
RDBMS 106 via the interface 104. Further, each client 102
may have other data models 106.

25

40

45

55

4

Note that clients 102, interface 104, and RDBMS 106 may
be implemented in separate machines, or may be imple-
mented as separate or related processes in a single machine.
Moreover, in one or more embodiments, the system 100 may
use any number of different parallelism mechanisms to take
advantage of the parallelism offered by the multiple tier archi-
tecture, the client-server structure of the client 102, interface
104, and RDBMS 106, and the multiple access module pro-
cessors 110 of the RDBMS 106. Further, data within the
relational database may be partitioned across multiple data
storage devices 112 to provide additional parallelism.

Generally, the clients 102, interface 104, RDBMS 106,
parsing engine 108, and/or access module processors 110A-
110E comprise logic and/or data tangibly embodied in and/or
accessible from a device, media, carrier, or signal, such as
RAM, ROM, one or more of the data storage devices 112A-
112E, and/or a remote system or device communicating with
the computer system 100 via one or more data communica-
tions devices. The above elements 102-112 and/or operating
instructions may also be tangibly embodied in memory and/
or data communications devices, thereby making a computer
program product or article of manufacture according to the
invention. As such, the terms “article of manufacture,” “pro-
gram storage device” and “computer program product” as
used herein are intended to encompass a computer program
accessible from any computer readable device or media.
Accordingly, such articles of manufacture are readable by a
computer and embody at least one program of instructions
executable by a computer to perform various method steps of
the invention.

However, those skilled in the art will recognize that the
exemplary environment illustrated in FIG. 1 is not intended to
limit the present invention. Indeed, those skilled in the art will
recognize that other alternative environments may be used
without departing from the scope of the present invention. In
addition, it should be understood that the present invention
may also apply to components other than those disclosed
herein.

Hardware and Software Environment Details

As described above with respect to FIG. 1, the master data
is stored in RDBMS 106 and is accessed by clients 102 via
interface 104. Such client 102 access through interface 104 is
enabled by MDM sanctioned data processes referred to as
workflows (e.g., provided in interface 104). Rather than being
provided via interface 104, such workflows may be provided
as part of parsing engine 108 or be provided by the AMPs 110
(or other parts of RDBMS 106). Consumer applications and
processes may execute on clients 102 and may need to receive
data from the RDBMS 106.

Further, as described above, it is desirable to manage mas-
ter data across different versions of the data. In this regard, it
is desirable to manage versions of hierarchies that contain
master data records and master data relationships. To enable
such versioning management and to achieve accurate deci-
sion making, hierarchy master data and its associated rela-
tionship data must be consistent and accurate. With the capa-
bility of providing various “what-if” scenarios of future
verses present data relationship analysis, via “versioning”,
embodiments of the invention provide a distinct advantage to
the decision makers of the organization.

Within MDM, a “Version’ is an exact copy of the master
data and all of its associated master data relationships tied
together via a version-ID. A newly formed ‘Version’ can
remain as the original, or modifications can be made to it (or
any of its data contents), for comparisons, analysis and/or
reporting. The data model illustrated in FIG. 2 can assist in
visualizing a hierarchy version in accordance with one or

US 9,098,538 B2

5

more embodiments of the invention. The data model of FIG.
2 can also be viewed as a version extension to the master data
relationship management (MDRM) data model. A detailed
description of FIG. 2 is below.

Embodiments of the invention directly integrate the man-
agement and visualization of hierarchical data with master
data management. This allows for customers to view, visual-
ize, and interact with data in a hierarchical version, while
allowing this data to remain under the control of the MDM
framework.

One desirable element in a design of embodiments of the
invention is to create additional placeholder data structures
and tables for the version metadata and data itself. Accord-
ingly, a new staging area named “Version” may be added (to
the existing data model) for replicating the master data. Each
master table has one corresponding version table. Also the
version table may have an additional attribute denoting the
version information and effectively forming the part of the
primary key in the version tables. The version table may
follow the standard naming conventions as per MDM staging
areas.

Versioned staging tables are designed to utilize partitioning
concept (PPI) to optimize the retrieval and deletion of version
data, as the data is always fetched/analyzed with respect to a
particular partition at a time, hence, a version id is chosen to
be the partition column, providing the benefits of dynamic
partition elimination (DPE) at the run time.

An exemplary scenario is that of a geography hierarchy
consisting of Country, State and City data. For simplicity,
assume that these three data elements are master tables within
the MDM context. These tables would also be the Relation-
ship Objects (ROs) in the MDM Hierarchy Management con-
text. The RO creation sub-module needs to be enhanced to
capture the version related information by adhering to the
above design principles.

There may be a need to take a version of this geography
hierarchy for an analysis/comparison purpose. The version-
ing process would copy the hierarchy metadata and the actual
master data into the corresponding Version tables.

All of this information (master data as well as metadata) is
stored in physically separate staging/meta tables. Accord-
ingly, the versioned data will have the proviso to undergo
edits for “what-if” types of analysis or can be specified as
“read-only” versions for historical or time dependent analysis
and can be accessed in the same way as other hierarchies
would be accessed from hierarchy a manager/viewer. Addi-
tionally, each of these hierarchies can undergo multiple ver-
sions.

All other sub features of hierarchy manager/viewer, e.g.,
search and drag and drop, including the support for database
views, may also be enhanced to support the versioned hier-
archy.

Hierarchy Manager Architecture

As described above, a hierarchy is a set of business data that
can be organized into a hierarchical structure. In master data
management (MDM), a hierarchy is constructed from the
data already contained in a database (e.g., a Teradata™ data-
base available from the assignee of the present invention).
This means that the member data contained in the fact tables
that comprise a hierarchy is already under management of
various MDM workflows and business processes.

The hierarchy manager feature of MDM allows users with
proper authorization to create and modify the structural com-
position of a hierarchy. This hierarchy structure can then be
used to drive a hierarchy viewer and any reporting processes.
The hierarchy manager and viewer are integrated directly into
the Master Data Management Framework (described above).

10

15

20

25

30

35

40

45

50

55

60

65

6

Its hierarchy viewer (and manager)’s primary responsibilities
are to allow users to visualize the data in a hierarchical fash-
ion. Users can also interact directly with this data, to access
detailed information about specific data elements, or to
manipulate the data in a way that modifies the hierarchical
relationships of the data.

Inview of the above, various implementations of the inven-
tion may provide the ability to create a hierarchy and then
launch a viewer to view the hierarchy and edit the hierarchy
data.

FIG. 3 illustrates the architecture of the hierarchy manager
in accordance with one or more embodiments of the inven-
tion. Essentially, the hierarchy manager 300 consists of three
primary components: user interface 302, business tier 304,
and the MDM hierarchy database 306. A brief summary of
each component 302-306 is described followed by details of
each component 302-306.

The user interface 302 may be coded using Adobe™
Flex™ components (e.g., Adobe™ Flex™ 3 [MXML 302A
and ActionScript™ 3.0 302B]). A thin business delegate layer
302B (and supporting data transfer [or value]| remote objects
302C) serves to separate the business tier logic 304 from the
remainder of the presentation logic. This business delegate
may be written in ActionScript™ 302B. Thus, the business
delegate layer 302B separates the presentation logic 302A
from the business logic 304 in the web application server.

The business tier 304 resides on a web server and consists
of POJOs (Plain Old Java Objects) 304A that handle the
majority of the business tier processing.

The MDM hierarchy database 306 is a new database that
holds various metadata tables. The tables hold metadata about
hierarchies. This includes information about the dimensions,
hierarchies, hierarchy objects, and hierarchy relationships.

The user interface component 302 is designed in a rich
interface application (RIA) (e.g., via MXML 302A and
ActionScript 320B) which in turn utilizes remote objects
302C to call a Java™ servlet deployed in the web application
server 304 (e.g., via BlazeDS™). BlazeDS™ 304B is a
server-based Java™ remoting and web messaging technol-
ogy (available from Adobe™) that enables developers to eas-
ily connect to back-end distributed data and push data in
real-time to Flex™ applications (i.e., in user interface 302)
for more responsive rich internet application (RIA) experi-
ences.

To support hierarchy versioning, the user interface 302
may include various Flex™ based screens for capturing ver-
sioning metadata and triggering the versioning process. Ver-
sioned hierarchy may be treated similar to a normal hierarchy
and should maintain the common look and feel. Users may be
able to indicate whether the version is editable or non-edit-
able, at the time of creation. Users may also be able to launch
the version viewer from a hierarchy manager and may also be
able to jump directly to the viewer. Once launched, if a ver-
sion is editable, embodiments of the invention may allow the
user to perform operations like drag/drop and cut/paste to
modify the hierarchy.

As described above, embodiments of the invention provide
an extension to the existing hierarchy management feature
within MDM. For creation of the new version staging area, a
new “version” service may be added that represents the new
version tables. The schema generation and incremental
schema generation process may be enhanced to account for
the new staging area. Various components and viewing sys-
tems may be modified to depict such a new staging area and
capture related details. Additional metadata tables may also
be defined to capture the hierarchy version metadata. Again,
as described above, Flex™ technology may be used to repre-

US 9,098,538 B2

7

sent the rich user interface for management of hierarchies.
The Java™ based APIs (application programming interfaces)
may also be enriched to handle the versioning related objects
and data for the business tier 304. New user interface panels
and controls may also be defined for the creation of a version
and viewing the version. In addition, stored procedures may
be used for all data replication tasks to leverage the database
306 capabilities.

Additional details and example implementations of the
user interface 302 are described below.

The business tier component 304 may be configured to
support various high-level business tier functions for both
hierarchies and the hierarchy version viewer. In this regard,
various Java™ APIs may be enriched to handle the versioning
related objects and data for the business tier 304. With respect
to hierarchies, the business tier 304 may provide the ability to
get a hierarchy version for a hierarchy (i.e., returning a list of
versions). In addition, a hierarchy version may be created by
adding an entry to a hierarchy version table, a version meta-
data table, and by replicating the master data from MDM
tables to version tables for all entities in the hierarchy.

To provide support for the hierarchy version viewer, the
business tier 304 may perform search operations before and
after launching a version viewer. Additionally, version data
may be modified by various means (e.g., drag and drop, cut
and paste, etc.). Lastly, on the click of a node, an internal or
internal URL (uniform resource locator) may be launched
that can provide additional details of the node.

Details of Exemplary Implementation

MDM Database 306

FIG. 2 above illustrates the general architecture for the
tables within the MDM master database 306, which contain
the member data of the relational objects, as well as the
relationships to other relational objects. The hierarchy man-
ager of the invention may always read and write through the
primitive views that exist in the hierarchy database. However,
the manager may not read/write directly to the master data-
base 306. Nonetheless, since the database contains the master
data, details of the enhancements to the various tables are
described herein (for completeness). As described above, to
visualize a version of a hierarchy, each master table (from a
standard hierarchy) will have a corresponding version table.
The data model of FIG. 2 illustrates the database enhance-
ments in order to provide versioning related metadata tables
in accordance with one or more embodiments of the inven-
tion.

A dimension table 218 defines a dimension. Fields within
the table include a unique identifier (e.g., an integer) of the
dimension, a name of the dimension, and a description of the
dimension.

The hierarchy table 220 defines a hierarchy that belongs to
a specific dimension (from dimension table 218). The hierar-
chy table 220 includes a HierarchyID, a name of the hierar-
chy, a description of the hierarchy, a version number for the
hierarchy, a dimension ID for the dimension to which the
hierarchy belongs, the name of the user creating the hierarchy,
and a timestamp of the create date. The key to the hierarchy
table 220 is the combination of the hierarchy ID and the
version number.

The hierarchy version table 224 contains information
about each version of the hierarchy (from hierarchy table 220)
including an ID (of the hierarchy), a version number, a name
of the user that explicitly created the hierarchy version, a
description of the version, a date the hierarchy becomes effec-
tive, a placeholder column for the status of the hierarchy
version, and the date the user created this version of the
hierarchy. Further information regarding the version informa-

10

20

30

40

45

50

55

8

tion may be stored in table 226 and details regarding the
version information of table 226 may be stored in version
information details table 228.

A hierarchy relational object model (ROM) table 222 that
defines a relation between hierarchy 220 are relational object
entities (tables 202-208). One hierarchy 220 can have one or
more than one relation. The hierarchy ROM table 22 includes
a unique identifier (e.g., integer) of the hierarchy 220 and an
ID of the relational object map 208.

A relational object (from the hierarchy database) and a
corresponding version relational object table 206 support the
ability to use a hierarchy object in multiple hierarchies. To
view a portion of the information in table 206, a version
relational object filter may specify filtering information in
table 214. Similarly, hierarchy information for the level of the
relational object (for table 206 and the hierarchy version table
220) may be specified in table 216. Table 206 may include the
following:

a unique identifier of the relational object;

a logical name of the table present in the database;

aphysical name of the table present in the MDM database;

a name of the relational object;

a description of the relational object;

aview name for which relational object is created (null if a
physical name exists);

a name of the column of the table that is to be displayed in
the hierarchy viewer;

a URL address of a website launched when a user clicks on
the node (the website can be internal or external);

a parameter of the URL that needs to be appended;

column names by which data is to be sorted;

logical column name that is to be displayed;

logical names of columns by which data is to be sorted;

logical name of columns that are displayed when a user
hovers around the node;

a display name for versioning;

a sort column in the version table by which data is to be
sorted;

a URL address of a versioned node that is launched when
the node is clicked on;

a version physical name;

a name of the view that is used for versioning (null when a
physical name is specified);

a logical name of a version table; and

a logical column name that is displayed when a node is
hovered.

A relational object map (from a hierarchy database) and a
corresponding version relational object map table 208 con-
tain relational object relationships. Various relational object
properties/version relational object properties and relational
object data/version relational object data for the relational
object map may be specified in tables 210 and 212 respec-
tively. Fields/columns for the relational object map table 208
may include:

a unique identifier (integer) of the relational object map;

the name of the relationship, i.e. “Families to Segments”;

the name of relationship which two relational objects are
mapped;

a unique identifier of the relational object that is present as
the parent in the relation;

a unique identifier of the relational object that is present as
the child in the relation;

a unique identifier of the relational object key type table
202, that defines the type of key for the parent RO (a descrip-
tion of the version relational object key may also be specified
in a separate table 204);

US 9,098,538 B2

9

a unique identifier of the relational object key type table
202, that defines the type of key for the child RO;

aunique identifier of the relational object (e.g., the version
relational object data table 212) for the relation’s target (i.e.,
where the relational data persists);

physical names of columns that are involved in the map-
ping of relations from the parent RO table;

physical names of columns that are involved in the map-
ping of relations from the child RO table;

a description of the relation;

logical names of columns that are involved in the mapping
for relations from the parent RO table; and

logical names of columns that are involved in the mapping
for relations from the child RO table.

For versioned tables (i.e., all of the tables of FIG. 2), an
additional column/field may be added to indicate the version
ID. All other columns may remain the same from the hierar-
chy tables in the MDM database. Further, stored procedures
may be used for all data replication tasks to leverage the
database capabilities.

Framework Related Enhancements

For creation of the new version staging area, a new “Ver-
sion” service may be added that represents the new version
tables (i.e., of FIG. 2). As described above, MDM provides
the process and framework for maintaining a series of busi-
ness rules and process workflows that manage business criti-
cal data as it feeds in from multiple sources. Developers may
need to design the schema for the database where the master
data is stored. Prior art implementations provided a schema
generation and incremental schema generation process to
provide such design capabilities. To account for the addition
of the new version service and version staging area, the
schema generation and incremental schema generation pro-
cesses may be enhanced. Further, prior art management and
design tools (e.g., Studio™) may be modified to depict the
new staging area and to capture related details.

User Interface Enhancements for Versioning

Asdescribed above, it is desirable for customers in a MDM
context to have the ability to search for a certain entity, view
it in the hierarchy, and then launch a maintenance workflow
for that record. Referring again to FIG. 3, the Adobe™ Flex™
technology (e.g., Adobe Flex 3™) within Ul component 302
provides a capability to represent and view an entity using a
hierarchy Flex™ UI. In addition, hierarchy versioning may
utilize new Flex™ based screens for capturing versioning
metadata and triggering the versioning process. A versioned
hierarchy is treated similar to a normal hierarchy and main-
tains the common look and feel as that of prior art hierarchies
in a hierarchy viewer.

To create a hierarchy version, a user simply selects a menu
option to create a version based on a currently selected hier-
archy (that the version will correspond with). FIG. 4 is an
exemplary user interface illustrating the selection of a menu
option to create a new hierarchy version in accordance with
one or more embodiments of the invention. As illustrated, the
user selects a particular hierarchy (e.g., hierarchy “Coun-
try_State_City” 402), activates a menu command (e.g., via a
keyboard control, right mouse click, etc.) and selects the
“Create version” option 404 from menu 406.

In response to the activation of menu option 404, the user
may be presented with additional options for the hierarchy
version. FIG. 5 is an exemplary user interface illustrating the
options for configuring a hierarchy version in accordance
with one or more embodiments of the invention. As illus-
trated, users can indicate whether the version is editable or
non-editable 502, at the time of creation. Making a hierarchy
non-editable would imply that editing or “drag and drop”

10

15

20

25

30

35

40

45

50

55

60

65

10

would not be allowed on this particular hierarchy version.
Additional hierarchy version metadata may be specified
including the reason for creating the hierarchy version 504,
the version number 506, and the start and end dates 508.

To view a hierarchy, the user can launch a version viewer
from within the hierarchy manager and can also jump directly
to the viewer. Once launched, if the version is editable, it
would allow the user to perform operations like Drag/Drop
and Cut/Paste to modity the hierarchy. Further, the hierarchy
viewer enables the user to view additional details of the hier-
archy version including the creator and effective dates (e.g.,
specified in the user interface of FIG. 5). FIG. 6 is a user
interface illustrating a view of a hierarchy version using a
hierarchy viewer in accordance with one or more embodi-
ments of the invention. As illustrated, the version, reason,
user, and relevant dates are displayed in the viewer 602.
Logical Flow

FIG. 7 is a flow chart illustrating the logical flow for main-
taining versions of structured views of data in a computer
system in accordance with one or more embodiments of the
invention.

At step 702, a relational database management system
(RDBMY) is executed. The RDBMS stores master data in the
computer system in one or more master RDBMS tables.
Further, the master data is hierarchical in nature and hierarchy
metadata for the master data is also stored in the RDBMS
tables.

At step 704, as part of a process and framework, a series of
business rules and process workflows to manage the master
data are maintained.

At step 706, one or more version tables are created in the
RDBMS that correspond to each of the one or more master
RDBMS tables. Each of the version tables further includes an
attribute denoting version information (to tie together the
different versions and also establish a primary key in/for each
version). Further, the version tables may utilize a partitioning
concept to optimize a retrieval and deletion of version data.

At step 708, one or more versions of the master data are
defined by replicating (e.g., in a version staging area) the
master data and hierarchy metadata stored in the master
RDBMS tables into the corresponding version tables.

At step 710, the version tables are used to graphically
visualize, manage, and manipulate the one or more versions
of the master data. Thus, a version of the master data may be
edited using the hierarchy data stored in the version tables
(e.g., using a hierarchy viewer that displays a hierarchical
representation of the different versions.

CONCLUSION

This concludes the description of the preferred embodi-
ment of the invention. The following paragraphs describe
some alternative embodiments for accomplishing the same
invention. In one alternative embodiment, any type of com-
puter or configuration of computers could be used to imple-
ment the present invention. In addition, any database man-
agement system, decision support system, on-line analytic
processing system, or other computer program that performs
similar functions could be used with the present invention.

Inview ofthe above, embodiments of the invention support
different versions of master data that can be used to historical
or time dependent analysis and that can be accessed in the
same way as other hierarchies. Further, such versioning is
supported as part of and integrated into the master data man-
agement context.

The foregoing description of the preferred embodiment of
the invention has been presented for the purposes of illustra-

US 9,098,538 B2

11

tion and description. It is not intended to be exhaustive or to
limit the invention to the precise form disclosed. Many modi-
fications and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

What is claimed is:

1. A computer-implemented method for maintaining ver-
sions of structured views of data in a computer system, com-
prising:

(a) executing a relational database management system
(RDBMSY) that stores information in the computer sys-
tem, wherein:

(1) the RDBMS is part of a centralized framework that is
configured to manage, view, and control access to the
information;

(ii) one or more business rules and one or more workflow
data processes manage the information from multiple
sources;

(iii) the one or more business rules and the one or more
workflow data processes are applied to the information
from multiple sources, to consolidate the information
and produce master data;

(iv) the master data is stored in a central business database
of the RDBMS in one or more master RDBMS tables;

(v) the master data is fed to one or more consuming busi-
ness processes;

(vi) access to the master data is limited to one or more
workflow data processes of the framework;

(b) creating, within the framework, one or more version
tables in the RDBMS that correspond to each of the one
or more master RDBMS tables, wherein each of the one
or more version tables further comprises an attribute
denoting version information, and wherein the attribute
denoting version information forms a part of a primary
key in each of the one or more version tables;

(c) defining one or more versions of the master data by
replicating the master data and hierarchy metadata
stored in the master RDBMS tables into the correspond-
ing one or more version tables; and

(d) utilizing, within the framework, the one or more version
tables to graphically visualize, manage, and manipulate
the one or more versions of the master data in a hierar-
chical manner.

2. The method of claim 1, wherein the replicating of the

master data is performed in a version staging area.

3. The method of claim 1, wherein the one or more version
tables utilize a partitioning concept to optimize a retrieval and
deletion of version data.

4. The method of claim 1, further comprising editing one of
the one or more versions of the master data using the hierar-
chy metadata stored in the one or more version tables.

5. An apparatus for maintaining versions of structured
views of information in a computer system, comprising:

(a) a processor;

(b) a relational database management system (RDBMS)
executed by the processor of the computer system,
wherein:

(1) the RDBMS is part of a centralized framework that is
configured to manage, view, and control access to the
information;

(ii) one or more business rules and one or more workflow
data processes manage the information from multiple
sources;

10

15

20

25

30

35

40

45

55

12

(iii) the one or more business rules and the one or more
workflow data processes are applied to the information
from multiple sources, to consolidate the information
and produce master data;

(iv) the master data is stored in a central business database
of the RDBMS in one or more RDBMS tables;

(v) the master data is fed to one or more consuming busi-
ness processes;

(vi) access to the master data is limited to one or more
workflow data processes of the framework;

(c) a master data management system, executed by the
processor of the computer system, and configured to
maintain, as part of the framework, the one or more
business rules and the one or more workflow data pro-
cesses to manage the master data that resides in the one
or more tables in the RDBMS, wherein:

(1) the master data is hierarchical in nature;

(i1) hierarchy metadata for the master data is stored in the
RDBMS tables;

(ii1) the master data management system creates one or
more version tables in the RDBMS that correspond to
each of the one or more master RDBMS tables, wherein
each of the one or more version tables further comprises
an attribute denoting version information, and wherein
the attribute denoting version information forms a part
of a primary key in each of the one or more version
tables; and

(iv) the master data management system defines one or
more versions of the master data by replicating the mas-
ter data and hierarchy metadata stored in the master
RDBMS tables into the corresponding one or more ver-
sion tables; and

(d) ahierarchy viewer configured to utilize the one or more
version tables to graphically visualize, manage, and
manipulate the one or more versions of the master data in
a hierarchical manner.

6. The apparatus of claim 5, wherein the replicating of the

master data is performed in a version staging area.

7. The apparatus of claim 5, wherein the one or more
version tables utilize a partitioning concept to optimize a
retrieval and deletion of version data.

8. The apparatus of claim 5, further comprising editing one
of the one or more versions of the master data using the
hierarchy metadata stored in the one or more version tables.

9. An article of manufacture comprising a tangible non-
transitory program storage device readable by a computer,
tangibly embodying at least one program of instructions
executable by the computer to perform method steps of main-
taining versions of structured views of information in a com-
puter system, the method steps comprising:

(a) executing a relational database management system
(RDBMS) that stores the information in the computer
system, wherein:

(1) the RDBMS is part of a centralized framework that is
configured to manage, view, and control access to the
data;

(i1) one or more business rules and one or more workflow
data processes manage the information from multiple
sources;

(iii) the one or more business rules and the one or more
workflow data processes are applied to the information
from multiple sources, to consolidate the information
and produce master data;

(iv) the master data is stored in a central business database
of the RDBMS in one or more master RDBMS tables;

(v) the master data is fed to one or more consuming busi-
ness processes;

US 9,098,538 B2

13

(vi) access to the master data is limited to one or more
workflow data processes of the framework;

(vii) the master data is hierarchical in nature; and

(vi) hierarchy metadata for the master data is stored in the
RDBMS tables;

(b) creating one or more version tables in the RDBMS that
correspond to each of the one or more master RDBMS
tables, wherein each of the one or more version tables
further comprises an attribute denoting version informa-
tion, and wherein the attribute denoting version infor-
mation forms a part of a primary key in each of the one
or more version tables;

(c) defining one or more versions of the master data by
replicating the master data and hierarchy metadata
stored in the master RDBMS tables into the correspond-
ing one or more version tables; and

(d) utilizing the one or more version tables to graphically
visualize, manage, and manipulate the one or more ver-
sions of the master data in a hierarchical manner.

10. The article of manufacture of claim 9, wherein the
replicating of the master data is performed in a version stag-
ing area.

11. The article of manufacture of claim 9, wherein the one
or more version tables utilize a partitioning concept to opti-
mize a retrieval and deletion of version data.

12. The article of manufacture of claim 9, further compris-
ing editing one of the one or more versions of the master data
using the hierarchy metadata stored in the one or more version
tables.

10

15

20

25

30

14

